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Abstract—The purpose of the General Data Protection Regu-
lation (GDPR) is to provide improved privacy protection. If an
app controls personal data from users, it needs to be compliant
with GDPR. However, GDPR lists general rules rather than
exact step-by-step guidelines about how to develop an app
that fulfills the requirements. Therefore, there may exist GDPR
compliance violations in existing apps, which would pose severe
privacy threats to app users. In this paper, we take mobile
health applications (mHealth apps) as a peephole to examine
the status quo of GDPR compliance in Android apps. We first
propose an automated system, named HPDROID, to bridge the
semantic gap between the general rules of GDPR and the app
implementations by identifying the data practices declared in the
app privacy policy and the data relevant behaviors in the app
code. Then, based on HPDROID, we detect three kinds of GDPR
compliance violations, including the incompleteness of privacy
policy, the inconsistency of data collections, and the insecurity of
data transmission. We perform an empirical evaluation of 796
mHealth apps. The results reveal that 189 (23.7%) of them do
not provide complete privacy policies. Moreover, 59 apps collect
sensitive data through different measures, but 46 (77.9%) of them
contain at least one inconsistent collection behavior. Even worse,
among the 59 apps, only 8 apps try to ensure the transmission
security of collected data. However, all of them contain at least
one encryption or SSL misuse. Our work exposes severe privacy
issues to raise awareness of privacy protection for app users and
developers.

Index Terms—GDPR, Privacy policy, Data flow, GUI

[. INTRODUCTION

The General Data Protection Regulation (GDPR) is an
important data and privacy law, enforced since May 2018. The
purpose of GDPR is to provide improved privacy protection
based on a set of standardized data protection laws. For mobile
apps, the GDPR applies to ones that collect and process
personal data of European Union (EU) citizens. It does not
matter if the app is operated from outside of the EU. The
GDPR will still apply. Therefore, the GDPR is of considerable
significance to mobile apps.

However, the regulation in GDPR itself does not contain
any exact step-by-step guidelines about how to develop an app
that fulfills all the requirements. It only gives us a list of the
general rules that we must keep in mind when creating apps.
Therefore, the semantic gap between the general rules and
the app implementations may result in compliance violations

between GDPR and apps, which would pose severe privacy
threats to app users. Once that happens, the developers would
face administrative fines of up to to 20 million EUR, or in
the case of an undertaking, up to 4% of the total worldwide
annual turnover of the preceding financial year, whichever is
higher [1].

In this paper, we take mHealth apps as a peephole to
investigate the status quo of GDPR compliance in the Android
apps, which would help developers identify and fix problems
before releasing apps, and increase the apps’ reliability when
users prefer to download or use them. The rationale is that
the mHealth apps, which are developed to perform health-
related activities to help users monitor and manage their state
of health, usually collect a broad range of more critical health-
related information (PHI) [2] compared with the apps of other
categories. Moreover, PHI is an important special category of
personal data protected by GDPR.

We carefully read the articles in GDPR and summarize the
following three necessary regulations based on three basic
requirements for data protection. (see details in Section II-A).
e Completeness of Privacy Policy. The app should provide
a complete privacy policy [3] to inform users about how their
data is collected and used before app installation.

e Consistency of Data Collection. The app should not access
more data than what its privacy policy declares.

e Security of Data Transmission. The data transmission of
an app should adopt reasonable measures to keep secure.

However, it is difficult to investigate compliance violations
with the three regulations due to three challenges.

First, for the detection of the incomplete privacy policy,
since the policies are written in natural language without a
uniform structure, it is difficult to understand the relations
between the semantics declared in the privacy policy and the
notices declared in GDPR. Most of the existing approaches
only focus on the analysis of privacy policy with the natural
language processing (NLP) techniques [4], [5], [6], [7] without
considering the GDPR. To address this challenge, we combine
the NLP techniques with the machine learning algorithms
to generate six notice classifiers to detect whether a privacy
policy is complete or not (see Section III-A for details).
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Second, for the analysis of the inconsistent data collection,
the PHI of mHealth apps is usually entered by users through
the graphical user interface (GUI), making the related studies
that only concentrate on the system-managed user data (e.g.,
device id, IMEI, and IP address) obtained by API calls
inapplicable [8], [9], [10], [11], [12], [13], [14]. To address this
challenge, we analyze the app GUI to recognize the PHI inputs
and record its semantics based on a predefined PHI keyword
database. Then, we leverage the static analysis technique to
track the data flow of PHI to identify whether the mHealth app
collects it by writing to files or sending out. Finally, we match
the collected PHI with the those declared in privacy policy to
identify whether there exists an inconsistent behavior of data
collection (see Section III-B for details).

Third, for the identification of the data transmission security,
it is challenging to map abstract cryptographic concepts
(i.e., standard security rules) to concrete program properties.
Existing approaches [15], [16], [17] can only check violations
of security rules regardless of what data is protected; thus,
they cannot be directly adopted by our work. Therefore, we
initially analyze the tracked data flow information and identify
which PHI is protected by cryptographic implementations.
Then we study whether the implementations are compliant
with standard security rules (see Section III-C for details).

We implement the above ideas in a new system called
HPDROID to detect the GDPR compliance violations in
mHealth apps. We conduct an empirical study on 796 real
mHealth apps to examine whether they are compliant the
regulations. The main contributions are as follows:

(i) To our best knowledge, this is the first systematic
investigation on automatically detecting the compliance
violations between the GDPR and mHealth apps.

(i) We propose and develop HPDROID, an automated system
to effectively detect whether mHealth apps are compliant
with three privacy regulations summarized from GDPR.
We conduct an empirical evaluation with HPDROID
on 796 real mHealth apps. The experimental results
show that HPDROID can effectively detect the regulation
violations for mHealth apps, which has exposed severe
privacy issues to raise the awareness of privacy protection
for the mHealth app users and developers.

(iii)

II. BACKGROUND AND PROBLEM DEFINITION
A. GDPR

The GDPR agreed upon by the European Parliament and
Council in April 2016, has replaced the Data Protection
Directive 95/46/ec in May 2018 as the primary law [18].
It consists of 11 chapters and 99 articles that regulate how
organizations collect, use, share, secure, and process their
personal data and privacy of EU citizens for transactions
that occur within EU member states. Organizations that fail
to achieve GDPR compliance before the deadline (i.e., May
2018) will be subject to stiff penalties and fines. Note that
even organizations outside the EU need to be compliant
if they offer services to EU citizens. Never before have
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the needs of app users in this area been so forcefully and
comprehensively protected. The seriousness of the GDPR
should not be underestimated, which is why we have to take a
fresh look at the compliance problem between the GDPR and
Android apps. The analysis scope of this work focuses on three
regulations that are summarized from three corresponding
basic requirements in GDPR Article 5, i.e., transparency, data
minimization, and confidentiality.

Transparency: the GDPR requires that all the information
you provide about your data processing needs to be easy to
access and easy to understand. Providing a privacy policy is
an effective and necessary way to improve transparency [19].
Thus, we analyze the data processing transparency by detect-
ing the completeness of privacy policy.

Data minimization: the GDPR requires that personal data
shall be adequate, relevant and limited to what is necessary in
relation to the purposes for which they are processed. Thus,
we analyze the consistency of data collection by detecting
whether the app has accessed more data than what its privacy
policy declares.

Confidentiality: the GDPR requires that personal data shall
be processed in a manner that ensures appropriate security
of the personal data. Thus, we check whether the data
transmission of an app is adopted reasonable measures.

Note that there are many requirements defined in GDPR,
and it is challenging to consider all the requirements. In this
work, we only check three fundamental regulations based on
the above three basic requirements for data protection. For
other regulations, we leave them as our future work.

B. Privacy Policy

Software that operates on personal data is often required
to be accompanied by a privacy policy, which is a legal
document and software artifact that describes consumer data
practices [20]. For Android platform, the privacy policy is
designed and uploaded to Google Play Store [21] by relevant
developers for declaring what user data will be collected, why
it will be collected, and how it will be used [3]. Fig. 1 presents
the privacy policy of an app called com.uevo.heartrate. The
privacy policy initially declares that the app will collect
personal data from the users when they voluntarily choose to
provide such data. Then, it describes that the app developers
may share personal data with certain third parties without
further notice to users. Finally, the developers provide their
contact information. Note that the policies are generally
ambiguous, resulting a challenge to directly understand the
semantic meanings [22], [23].

C. Research Questions

RQ 1: Do the mHealth apps provide complete privacy
policies?

To improve the transparency of data processing, the mHealth
app developers need to provide a privacy policy that at least:

« Indicates the precise categories of personal data that the
app will process (Data Collection);
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Information we collect
When you interact with us through the Services, we may collect Personal Data and other information
from you, as further described below:
Personal Data that you provide through the services: we collect Personal Data from you when you
voluntarily choose to provide such information such as when you contact us with inquiries, respond to
one of our surveys, register for access to the Services or use certain Service.

Use of Personal Data and other information

‘We may also use your Personal Data and other personally non-identifiable information collected through
the Services to help us improve the content and functionality of the Services, to better understand our
users and to improve the Services. There are certain circumstances in which we may share your Personal
Data with certain third parties without further notice to you, including: Business Transfers, Service
Provides or Legal Requirements.

Contacting us
If you have any questions or concerns about this Privacy Policy or the Service, please feel free to contact
us at any time at info@uevo.com.

Fig. 1: A privacy policy of app called com.uevo.heartrate
Describes the purpose of data processing, and how the
data will be used and fitted in the products and services
(Data Usage);

Informs the user of their right to access and correct
personal data, and to delete it (User Right);

Informs the user that their use of the app is strictly
voluntary, but requires their consent to permit the
processing of personal data (User Consent);

Informs that appropriate technical measures are adopted
to protect personal data (Data Security);

Provides contact information where the user can ask data
protection related questions (Contact Information).

The first goal is to automatically detect whether a given
privacy policy contains the six minimal notice specifications.
We use Noticey, to denote the set of contained notice category
labels of a privacy policy pp. Complete privacy policy means
its Noticep, contains all the six labels, i.e., |Noticepy| =
6. For example, by carefully scrutinizing the privacy policy
illustrated in Fig. 1, we observe that it contains only three
notice specifications and its Noticep,, = {Data Collection,
Data Usage, Contact Information}. Therefore, the app does
not provide a complete privacy policy. To achieve the goal,
the main limitation is that the privacy policies are not written
in a structured, commonly used, and machine-readable format,
resulting that we cannot directly obtain Notice,).

RQ 2: Do the mHealth apps declare all the collected PHI
in their privacy policies?

Every mHealth app must be designed to only collect and
process PHI for its specific and legitimate purpose, which are
clearly defined in the privacy policy. Here we define the PHI
is collected by a mHealth app if it is input by users, and stored
with different channels such as sending out through network
or writing in local files. Collecting more PHI than what it
declares is an illegal behavior to the app users. Furthermore,
the data breach of such collected PHI could seriously affect
the app users’ profits and their confidence in the mHealth app.

The second goal is to automatically discover whether there
is any PHI collected by a mHealth app but not declared in the
privacy policy. To this end, we need to obtain two PHI sets.
One is the set of declared collected PHI (DC P) extracted from
the privacy policy. The other is the set of actually collected PHI
(AC'P) discovered from the app code. Thus, one inconsistent
behavior is discovered if there is any item in AC'P that is not
contained in DCP.

The DC'P can be constructed by analyzing the PHI items
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Fig. 2: GUI of app called com.sattva.sattvamanager

declared in the privacy policy with NLP techniques. However,
it is challenging to construct the AC'P because the PHI
is generally input by users on app GUI [8], [9], [10].
For example, Fig. 2 presents the GUI of an app called
com.sattva.sattvamanager that requires the users to provide the
PHI such as symptoms, payment, and medicine. It is difficult
for machines to automatically recognize the content of what
user input due to the lack of fixed structures of the GUI.
RQ 3: Do the mHealth apps implement reasonable
measures to ensure the transmission security of their
collected PHI?

The GDPR requires the developers to provide appropriate
technical safeguards to ensure the transmission security of
collected PHI. Encryption is the most obvious determinant of
security in mHealth apps communications [24]. However, even
for the encrypted PHI, there might be encryption misuse that
is not compliant with standard security rules.

Here, we make a list of the most common encryption
misuses according to the existing studies [25], [26], [27],
[17], [28]: © Do not use electronic codebook (ECB) mode
for encryption [25]; ECB mode uses a weak encryption
algorithm that produces the same ciphertext from the same
plaintext blocks, which would allow attackers to gain the
sensitive data easily. @ Do not use MD5 or SHA-1 algorithms
for encryption [26]; The modern attacks can compute large
numbers of hashes, or even exhaust the entire space of all
possible passwords using massively-parallel computing. ® Do
not use a constant initialization vector (IV) [27] or constant
keys [17] for encryption; The constant IV or keys result
in a deterministic and stateless cipher, which would make
the information insecure. @ Do not use the static seed for
SecureRandom() API call while generating random number
[28]; Using the static seed is predictable and can result in the
generation of random numbers with insufficient entropy.

Another common approach to protecting data during com-
munication on the Android platform is to use the Secure
Socket Layer (SSL) or Transport Layer Security (TLS)
protocols. For brevity, we refer to both protocols as SSL. The
inadequate use of SSL can be exploited to launch Man-in-the-
Middle attacks [29], [30].

Note that the above encryption misuses are not specified in
GDPR, but they are essential requirements that we need to
satisfy to ensure transmission security, which is an important
concept in GDPR.

The third goal is to identify whether there is unprotected
PHI, and misuse of the technical safeguards. The main
challenge is the mapping of abstract cryptographic concepts
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Fig. 3: Architecture of HPDROID.

introduced above to concrete program properties. Even exist-
ing approaches [15], [16], [17] have conducted related studies;
they cannot be directly adopted here since they only check
violations of security rules regardless of what data is protected.

III. METHODOLOGY

The overview architecture of HPDROID is illustrated in Fig.
3, which consists of three main modules.

A. Detecting Incomplete Privacy Policy

Natural Language Processing. Given a privacy policy
crawled from the websites in HTML format, we use
JSouP [31], a Java HTML parser, to extract the content
from the HTML file, and remove all non-ASCII symbols.
Then we split the extracted content into a set of sentences
using STANFORD TYPED DEPENDENCY PARSER [32]. After
that, each sentence is formalized using the bag-of-words
model [33] with the word stemming and removing of stop
words. Finally, a sentence st is represented as a feature
vector, where each dimension corresponds to the occurrence
of a separate word, and the number of dimensions denotes
the total number of unique words extracted from privacy
policy corpus. If a word occurs in the sentence, its value in
the vector is 1; otherwise, the value is 0.

Machine Learning Classification. After the prepossessing
of the privacy policy, we leverage the machine learning
algorithms to predict what notices do the extracted sentences
belong to. We use the term Notices to denote the set of
notice labels for sentence st. To generate the classifiers used
for notice prediction, we first need to construct a ground truth
dataset manually. In detail, we initially select 100 privacy
policies of mHealth apps that are crawled from the Google
Play Store and extract all corresponding sentences. Then,
two co-authors go through these sentences and understand
the semantics of each sentence, and manually construct their
corresponding Noticeg;. Note that, for each sentence, if the
constructed Noticeg; by the two co-authors are not same, then
a third co-author will check the result by having a discussion
with them to guarantee the labeling correctness. In this way,
we are able to obtain a ground truth dataset of sentences that
are attached with notice labels. The description of the dataset
is listed in Table I. Each notice category contains at least
100 sentences, and there are 1,284 labeled sentences in total.
Note that the construction of labeled ground truth with manual
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TABLE I: Descriptions of the constructed ground truth

Notice Category  #Sentences  Notice Category #Sentences
Data Collection 385 User Consent 121
Data Usage 334 Data Security 176
User Right 164 Contact Information 104

intervention is once for all when training the classifiers. For the
other modules, we do not need additional manual intervention.
Next, we construct a classifier for each notice prediction
based on the dataset. For example, to construct the classifier
used for Data Collection notice prediction, the 385 sentences
that contain the Data Collection label are regarded as the
positive instances. In addition, equal size of negative instances
are randomly selected from other labeled sentences. After that,
with the state-of-the-art machine learning algorithms such as
Random Forest [34], the classifier used to predict the Data
Collection notice can be generated.
Incomplete Policy Detection. After the generation of six
classifiers, the feature vector of a new sentence will be put
into the six classifiers in sequence. If the prediction result of
a notice classifier is 1, then its corresponding notice label will
be put into the Notices of the given sentence. Finally, the
Noticey, is obtained by merging all the generated Notices;
to detect whether the privacy policy is complete.

B. Analyzing Inconsistent Behavior

Before the construction of DC'P and ACP, it is essential
to construct a set of PHI. To this end, we carefully read
the GDPR recital 54 [35] and the National Health Data
Dictionary provided by the Australian Institute of Health and
Welfare [36], and then add the concrete PHI items into a set.
We use PS = {ps;|1 < i < m} to denote the full set of PHI,
where ps; denotes the unique name of a PHI item in PS, and
m denotes the number of PHI items; m = 227 in this work.

1) DCP Construction: To construct DC'P, we focus on
the sentences with notice labels of Data Collection and Data
Usage since we observe that all the data related operations
are declared in them. We first leverage the STANFORD TYPED
DEPENDENCY PARSER [32] to extract all the noun phrases.
However, it is not effective to directly map the noun phrases
with the items in the PS due to the diversity of natural
language. For example, the PHI called “doctor name" might
be written as “name of doctor” in the privacy policy.

Phrase Similarity Calculation. To measure the similarities
between the semantics of PHI with the noun phrases ex-
tracted from the privacy policy, we rely on the tool called
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|c/ass: android.widget. TextView | class: android,widget.EditText_|
| id: id: edt_medicine |

text: Medicine text: 0 |
Lbound: [9. 15111538, 1616] | bound: [0, 101311080, 1134] _

|d: edt_add_symptoms
text: Add Symptoms here
[ bound: [0, 1013][1080, w]_'
Fig. 4: Two examples of user input widgets and their associated metadata.
WORD2VEC [37] to transform the PHI items and the noun
phrases into a calculable form. As a result, the similarities can
be obtained based on the cosine similarity. If the similarity is
higher than the threshold e, which is set as 0.85, then ps; is
added into the DCP. Note that the parameter 0.85 is preset
based on our experience analysis on a set of similar phrases.

2) ACP Construction: The construction of AC'P relies on
two kinds of techniques: the GUI analysis technique, which
is used to identify the user input PHI; the data-flow analysis
technique, which is used to filter out the non-collected PHI.
GUI Analysis. To analyze the user input PHI from the GUI
of Android app, we need to render all the GUI layouts
and identify the semantics of the user inputs. Note that our
technique is extended based on UiRef [38]. First, an APK file
is disassembled using APKTOOL [39]. A file called public.xml
is generated to store all the resource identifiers of layout
widgets. Subsequently, a customized activity is injected into
the APK, and the manifest file of the app is rewritten to
register the injected activity as an entry point. After that, the
APK is reassembled and installed on a live device. When
the injected activity is launched, the layouts of the app are
rendered iteratively by invoking the serContentView() API call.
However, the dynamically generated text (e.g., label text set
by the setText() API call) cannot be extracted in this way
using UiRef [38]. To solve the problem, we also launch the
activities declared in the AndroidManifest.xml file to render
the corresponding layouts. Once a current layout is loaded, its
view hierarchy is dumped by UTAUTOMATOR [40]. Then, the
associated metadata of Ul widgets are extracted from the view
hierarchy, and each widget is represented as a four tuples form
(class,id, text, bound), where

o class denotes the widget type such as EditText.

o id denotes the widget id stored in the public.xml file.

o text denotes the plain text presented in the widget.

o bound denotes the coordinate of the displayed widget.

Next, we need to understand the semantics of the inputs.
In general, there are two methods for developers to present
the semantics of the inputs to help users understand what they
are required to provide. The first method is presenting the
semantics based on the hint text of the user input widget.
The second method is leveraging a label widget to present the
semantics. We call the two methods as the hint-based method
and the label-based method.

Two examples are illustrated in Fig. 4. The first example
presents an EditText that uses the hint text “Add symptoms
here” belongs to the hint-based method. The second example
presents an EditText that shows semantics with a combined
TextView belongs to the label-based method.

For the hint-based method, we analyze the text value of the
user input widget. The string value of the text is preprocessed
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Algorithm 1: Mapping of Labels and Input Widgets

Input: LB: the set of labels displayed in an UI; UITW: the set of
user input widgets displayed in an UL

Output: M: the set of output label and input widget mapping pairs.
1 foreach input in UITW do
LeftSet < ConstructLeftLabelSet(input, LB)
if LeftSet.size()>0 then

mapLabel < argmin,pe,c g dis(label, input)

M .put(input, mapLabel)

L B.remove(mapLabel) and UIW .remove(input)

Y I SN}

else

8 UpSet < ConstructUpLabelSet(input, Label)

9 if UpSet.size()>0 then

mapLabel < argming pec g dis(label, input)
M .put(input, mapLabel)

L B.remove(mapLabel) and UIW .remove(input)

13 return M

by the NLP technique. Then it is split into a set of words.
With such words, we construct a set of unigram phrases and a
set of bigram phrases. After that, each phrase in the two sets
is matched with the PHI items in PS based on the introduced
phrase similarity calculation method. If ps € PS is matched
with a phrase, ps is regarded as one user input PHI. If no ps is
matched, the given widget might use the label-based method.
For the label-based method, the main challenge is to map the
labels with their combined user input widgets. In our work,
we propose algorithm 1 to map the labels with user input
widgets. Algorithm 1 requires two inputs, LB and UIW.
For each input widget in the UIW, it is checked whether
there are any labels in LB that are closely placed on its left
or above by using the function ConstructLeftLabelSet() and
ConstructUpLabelSet(). The positional relations between the
widgets are calculated based on their extracted bound values.
Finally, for each pair in the output M, the text value of the
label will be matched with the PHI items in the same way as
solving the hint-based way to identify the user input PHI.
Data-flow Analysis. Note that the user input PHI cannot
be directly added into the AC'P since the app might not
store them. Thus, in our approach, the data-flow analysis
technique is used to recognize the point of getting specified
data and to further check the destination of fetched data.
We conduct the data flow analysis based on static analysis
tools such as FLOWDROID [41] and VULHUNTER [42],
which are implemented based on the Soot framework [43].
Notably, to enhance the static analysis accuracy, ICCTA [44]
is employed to identify the source and the target of intents,
and EDGEMINER [45] is utilized to determine the implicit
callbacks (e.g., from setOnClickListener() to onClick()). The
data-flow analysis includes three main parts, listing as below:
o Data Sources. The data sources are the points that we
obtain the PHI which will be tracked. We focus on the
user input PHI and the API call findViewByld() is selected
as the data source.
« Data Propagation. To track the data propagation in the
app code, we leverage the taint propagation techniques
[41]. In detail, the data sources are initially assigned with
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a unique taint tag. Then, the taint tag will be propagated
based on the direct data flow propagations according to
the intermediate representation extracted by Soot.

Data Sinks. The data sinks are the data use points of
the tainted variables. There are six different kinds of data
storage methods, including writing data into a log (e.g.,
Log.d()) or afile (e.g., FileoutputStream.write()), or send-
ing data out through network (e.g., HttpClient.execute()))
or short messages (e.g., SmsManager.sendTextMessage()),
or inserting the data into a database (e.g., SQLite-
Database.update()) or the content provider (e.g., Con-
tentResolver.insert()).

Note that, we also need to link the data flows with their
corresponding widget objects. We resolve the argument value
of the findViewByld() API call, and the argument value
demonts the id of the specific wedget object.

In summary, if an app collects one PHI and stores the data
with the above six methods, the PHI is added into ACP.
Finally, one inconsistent behavior is discovered if there exists
an item in AC'P that is not contained in DCP.

C. Identifying Insecure Data Transmission

1) Encryption Analysis: For the identification of the use of
system-provided encryption algorithms, we observe that the
symmetric encryption (e.g., AES algorithm) and asymmetric
encryption (e.g., RSA algorithm) schemes are generally
accessible to an app through the Cipher object by using
the doFinal() API call. In addition, the one-way encryption
schemes (e.g., MD5 and SHA-1 algorithms) are generally
accessible to an app through the MessageDigest object by
using the digest() API call. Therefore, we use such encryption
API calls as data sinks and apply data-flow analysis techniques
to detect whether there exists complete data flow from the data
sources (i.e., findViewByld()) to any encryption API calls. If
no complete data flow is found, we regard that such PHI is
not protected with system-provided encryption algorithms.

Although there are security pieces of advice in the official
documents and an extensive body of security-related research
about exploits and vulnerabilities, using encryption algorithm
correctly is still not easy for inexperienced or distracted
developers [46]. We assess the four security rules (introduced
in Section II-C) on the mHealth apps by checking their
corresponding program properties.

To evaluate the rule @, we resolve the Cipher.getInstance()
API call to find what transformation string is specified by
the developers to be used as arguments of the API call. If
the string “ASE” is used as the argument, the encryption
mode is automatically chosen as ECB mode. To improve
security, another encryption mode with padding such as
“AES/CBC/PKCS5Padding” should be used.

To evaluate the rule @, we initially check whether the
digest() API call is used as the data sink. If so, we then resolve
the MessageDigest.getInstance() API call to find whether its
argument is specified with string “MD5” or “SHA-1".

To evaluate the rule ®, we compute the backward slices for
the arguments of IvParameterSpec() and SecreKeySpec() API
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calls, and then determine whether the used arguments consist
of constant values. If the slices only depend on constant values,
the IV or the keys are constant too.

To evaluate the rule @, we construct a backward slice from
each call site to the SecureRandom() API to check whether
the developers specify the seed value.

2) SSL Analysis: SSL is another common approach to
protect data during transmission on the Android platform, in
which the java.net, android.net and org.apache.http packages
can be used to create sockets or HTTP(S) connection.
However, as introduced in [47], a large number of apps
implement SSL with inadequate validation such as containing
code that allows all hostnames or accepts all certificates.
Insecure SSL transmission is dangerous since they would
generally carry critical sensitive data such as the collected
PHI. To detect the usage of SSL analysis in mHealth apps,
we focus on the PHI that is sent out through the network with
sink API calls in the three network-related packages. Then
we identify the SSL misuse by using a static analysis tool
called MALLODROID [16], which can automatically check
SSL security risks in apps.

IV. EVALUATION
A. Data Collection

To evaluate HPDROID we initially crawl 1,200 popular real
mHealth apps from Medical and Health categories on the
Google Play [21] according to their download counts. Then we
remove the apps that do not contain a privacy policy written
in English language. Finally, there are 796 mHealth apps
remained. After that, to answer RQ 1, we use the constructed
ground truth dataset (i.e., 1,284 labeled sentences in total)
introduced in Section III-A to generate notice classifiers, and
then use the classifiers to detect whether the unlabeled policies
are complete or not. To answer RQ 2, we focus on the apps
that require users to input PHI on the GUIL After the removing
of the apps that are only used to introduce health-related
knowledge based on the GUI analysis step, 253 remaining
mHealth apps (31.78% of 796 apps) are analyzed in the
analysis module of inconsistent behavior. To answer RQ 3,
the 59 apps that collect PHI are put in the identification
module of insecure data transmission to check whether they
have implemented reasonable PHI data protection measures.

In addition to the mHealth apps, we also need to construct
the set of sink API calls. Based on the API list provided by
SUSTI [48], we manually remove the API calls that do not
belong to our six defined data storage methods. In the end, 78
sink API calls are used.

The apps and their privacy policies, as well as the generated
data flow information, can be found on our website!.

B. RQ I: Do the mHealth apps provide complete privacy
policies?

1) Performance on Labeled Dataset: A ground truth dataset
that consists of 1,284 labeled sentences is used to construct

Uhttps://drive.google.com/drive/folders/18qaSTuHem_
2LLBsMM70Y9VwZrfvi686t?usp=sharing
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TABLE II: Classification results for the notice categories in labeled dataset.

Notice Classifier ~TPR FPR Precision  Recall  F-1
Category
Data RF 0.937  0.132 0.877 0.937 0.906
Collection NB 0.882  0.153 0.852 0.882 0.867
DT 0.789  0.192 0.804 0.789 0.797
Data RF 0.884  0.154 0.852 0.884 0.867
Usage NB 0.865  0.164 0.841 0.865 0.853
DT 0.830 0.214 0.795 0.830 0.812
User RF 0.950  0.157 0.858 0.950 0.901
Right NB 0.862  0.113 0.884 0.862 0.873
DT 0.836  0.176 0.826 0.836 0.831
User RF 0.878  0.104 0.902 0.878 0.890
Consent NB 0.887  0.130 0.872 0.887 0.879
DT 0.922  0.035 0.964 0.922 0.942
Data RF 0914  0.018 0.980 0.914 0.946
Security NB 0.908  0.043 0.955 0.908 0.931
DT 0.896  0.055 0.842 0.896 0.918
Contact RF 0.980  0.020 0.980 0.980 0.980
Information NB 0.980  0.010 0.990 0.980 0.985
DT 0.990  0.010 0.990 0.990 0.990
§
5
% 6 Data Collection
Op 124
.3 " Data Usage|
Sm User Rightf
53 14 User Consent]
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8 Data Security]
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Fig. 5: Completeness detection results for 796 unlabeled privacy policies: (a)
the number of privacy policies that cover different notice categories; (b) the
number of privacy policies that lack of different notice categories.

six notice classifiers. To select the proper classifier with
best detection performance, we apply three widely-used
classification algorithms [10] (i.e., Decision Tree (DT) [49],
Random Forest (RF) [34] and Naive Bayes (NB) [50]) on each
notice category with 10-fold cross-validation. Table II lists the
results. Using F-1 value to measure the classifier performance,
Random Forest performs best in four notice categories while
Decision Tree performs best in the remaining two notice
categories. Consequently, the Decision Tree classifier is used
to detect the User Consent and Contact Information categories,
while the Random Forest classifier is used to detect the others.

2) Detection Results on Unlabeled Dataset: We apply the
constructed classifiers on the 796 unlabeled privacy policies
to detect whether they are complete. As illustrated in Fig.
5 (a), 607 (76.3%) privacy policies cover all the notice
categories and the other 189 (23.7%) privacy policies are
incomplete, of which 34 policies cover no more than three
notice categories. Notably, there are two privacy policies (i.e.,
com.bytewaremobile.oasi and com.app.tctnews) that do not
cover any notice category, indicating that they do not provide
any useful information for app users. We manually inspect
the privacy policy links provided by the two apps, and find
that they redirect to other websites that do not contain any
privacy policy related content. Fig. 5(b) presents the number
of privacy policies that lack different notice categories. For
example, 58 privacy policies that do not cover Data Usage
notice. More interesting, we find that 48 of the 58 policies
have the Data Collection notice, indicating that such privacy
policies collect personal information but do not illustrate
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Privacy Policy

This app may collect user data for the purposes of gameplay as well as
providing targeted advertising. The handling of all user data complies
with the guidelines outlined at https://play.google.com/about/privacy-
security. If there are any questions, please contact us through the
developer contact link on the Google Play store.

Fig. 6: An example of the incomplete privacy policy of app com.bodyyouwant
what purpose the information is used for, which violates the
transparency requirement of GDPR. In addition, 125 (15.7%)
privacy notices do not cover the Contact Information notice
category, which indicates the users could not contact with the
app developers if they have any problems about the app usages.
The main reason might be that the developers have provided
emails on the app downloading page; thus, they think it is not
necessary to provide again in the privacy policy.

3) False Positives and False Negatives: We further investi-
gate the false positives and false negatives of the constructed
classifiers. To this end, we randomly select 100 sentences from
the unlabeled dataset. Then we carefully read the sentences
and check whether their attached labels are correct. We find
that 7 sentences are incorrectly classified due to the features
with high information gain (e.g., “we”, “please”, and “collect”)
occur in more than two categories. For example, the sentence
“By using our website, you agree that we can place cookies on
your computer/device.” is attached to labels User Consent and
User Right. The label User Right is incorrectly attached since
the sentence contains the keywords “you” and “can” similar
to the structures of training sentences in User Right category.

Moreover, four sentences are found as false negatives
because their verbs do not occur in our labeled training dataset.
For example, the verb “forward” in the sentence “The data
have never been and will not be forwarded to third parties.”
is not found in the training dataset. To reduce this threat,
replacing the uncommon verbs with the common ones through
sentence semantic analysis is a promising way.

4) Case Study of the Incomplete Privacy Policy: As shown
in Fig. 6, the privacy policy of app com.bodyyouwant is
attached with three labels, i.e., Data Collection, Data Usage,
and Contact Information. It does not declare that it will
ask for the users’ consent before collecting user information,
indicating that the collection process is non-transparent to the
users. Furthermore, there is no user right described in the
policy, indicating that the user does not know what they can
do with the collected data. Such incomplete privacy policy is
not clear to the app users and violates the GDPR. However,
HPDROID is significant to guide app developers to provide
complete policy and help app users quickly understand the
semantics of important notices in the expatiatory policy.

Answer to RQI1: For the 796 mHealth apps, 189
(23.7%) of them do not provide complete privacy policies.
The incomplete privacy policy violates the GDPR and
poses privacy issues for app users in the real world.
It is imperative for app developers to complete existing
incomplete privacy policies.

C. RQ 2: Do the mHealth apps declare all the collected PHI
in their privacy policies?

To answer this research question, we only focus on the 253
mHealth apps that require users to input PHI.
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TABLE III: Distribution of the collected PHI for 59 mHealth apps that actually collect PHI. The numbers of the non-declared PHI are listed in the brackets

PHI Log File Network SMS Database Content Total PHI Log File Network SMS Database Content Total
name 23 7 7 0 3 1 41(17) symptom 1 0 0 0 0 0 1(1)
email 17 1 9 0 0 0 27(7) amount 1 0 0 0 0 0 1(0)
password 13 4 4 0 0 0 21(16) patient 0 1 0 0 0 0 1(1)
phone 6 1 5 1 0 0 13(6) pregnancy 0 0 0 0 0 1 1(1)
weight 9 1 0 0 0 0 10(7) gender 1 0 0 0 0 0 1(0)
location 1 3 1 0 3 1 9(5) reason 1 0 0 0 0 0 I(1)
height 3 1 0 0 1 0 5(4) activity 1 0 0 0 0 0 1(1)
duration 1 1 2 0 1 0 5(5) glucose 0 1 0 0 0 0 1(1)
description 1 1 0 0 2 1 5(5) fat 1 0 0 0 0 0 1(1)
note 1 0 0 0 3 0 4(4) account 0 0 0 0 0 1 1(1)
date 2 0 2 0 0 0 4(4) doctor 1 0 0 0 0 0 1(0)
age 2 0 0 0 0 0 2(1) registration 0 0 1 0 0 0 1(1)
medication 2 0 0 0 0 0 2(1) Sum 88 22 31 1 13 5 160(92)
O Rueien | cpublic  type=“id”  name="etPass”

1) Result of Inconsistent PHI Collection: After the data-
flow analysis, 59 of the 253 apps collect the user input PHI
by storing them with six different channels. To investigate the
reasons for the other 194 apps that require the PHI input but
have no PHI collection, we randomly select 20 apps from
the 194 apps and manually analyze the app code. We find
that there are two main reasons. First, most of the input PHI
is only used to perform calculations such as health state,
and the mHealth apps will not store the PHI with the six
channels. Second, PHI collections might be missing due to
the limitations of the existing data-flow analysis techniques.
For example, the Android annotation technique [51] makes
HPDRoOID fail to link the findViewByld() with the widget
objects. We will discuss this limitation in Section V.

We use the terms Log, File, Network, SMS, Database and
Content to denote each data storage method, respectively. The
frequency distribution of the collected PHI is listed in Table
III. There are 160 PHI collection behaviors for the 59 apps, in
which name, email, and password are the most common ones.
Among the six data storage methods, Log is the most common
method since 55% of the collected PHI is written into logs,
SMS is the least-used method because there is only one phone
number collection behavior via sending messages.

After the construction of DC'P by tagging the declared PHI
in the Data Collection and Data Usage sentences, we match
them with the collected PHI in ACP. The results show that
46 apps have collected more PHI than what they declared
in their privacy policies. The numbers of the non-declared
PHI are listed in the brackets of the Total column in Table
III. For example, 21 apps collect the password of the users,
but 16 of them do not declare the password collection in
their privacy policies. In total, 92 inconsistent behaviors are
discovered for the 46 apps. We observe that the app developers
prefer to declare the common data, such as name, email,
password, and phone number. However, for the uncommon but
important data, such as duration, description, and date, they
do not declare such data collection behaviors in the privacy
policy. The inconsistent data collections violate the GDPR and
mislead the app users. Therefore, we want to alert the app
developers to provide consistent privacy policy by conducting
the inconsistent behavior analysis.

2) False Positives and False Negatives: We further inves-
tigate the false positives and false negatives for inconsistent
behavior analysis. For the false positive analysis, we initially
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| id="ex7fede1322>

h <

| Source API: “a

| findviewById(2131558706)
'

'
| Sink API: v |
H java.io.Write: void write(String) i

What we collect

We may collect the following information:
* name and job title

« contact information including email address

« demographic information such as postcode, preferences and interests
« other information relevant to customer surveys and/or offers

Fig. 7: An inconsistent behavior of app com.app.app889eelec94b3

read all privacy policies of the 46 mHealth apps that
contain inconsistent behaviors. Then we check whether each
inconsistent behavior is correct. The results show that among
the 46 apps, no false positive is found. For the false negative
analysis, since there is no ground truth for inconsistent
behavior discovering, we manually analyze the 13 mHealth
apps with no inconsistent behaviors to determine whether our
approach results in false negatives. The results show that all
the collected PHI has been declared in their privacy policies.
Therefore, there is no false negative.

3) Case Study of the Inconsistent Behavior: Furthermore,
we conduct a case study of inconsistent behavior, which
is illustrated in Fig. 7. The app provides the functionality
of changing the password for app users. By analyzing the
attributes of EditText widget, we obtain its hint value “Enter
password” and id “Ox7f0d0132”. Note that the hexadeci-
mal number “0x7f0d0132” is equal to the decimal number
“2131558706”. After that, based on the data-flow analysis,
the input password is written in a file through the sink
API java.io.Write: write(). The writing of input password to
file poses great threats to app users. Even worse, the app
developers do not declare that they collect password in their
provided privacy policy, which violates the data minimization
requirement of GDPR. Note that although they declare that
other information relevant to the users is collected, this kind
of vague description is also not transparent to app users and
it should be specified clearly.

Answer to RQ2: Among the analyzed 253 apps, 59 apps
collect PHI via different methods. However, 46 (77.9%) of
them contain at least one inconsistent collection behavior.
The app developers should not use vague descriptions about
data collection, which might cause the inconsistent data
collection behavior that poses great threats to the app users
and seriously violates the GDPR.
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D. RQ 3: Do the mHealth apps implement reasonable
measures to ensure the transmission security of collected PHI?

To identify whether the collected PHI for the 59 apps is
protected with reasonable measures such as data encryption or
SSL, we analyze the correctness of encryption usage for the
49 apps that collect information via five methods (i.e., Log,
File, SMS, Database, and Content), and check the correctness
of SSL usage for the other 10 apps that collect information
through Network.

1) Result of Encryption and SSL Analysis: After the
detection of encryption function, we observe that only 2 apps
(i.e., com.ysp.130band and kalcare.dsc) have adopted system-
provided encryption API calls to protect collected data. For
exmaple, com.ysp.130band encrypts the input password and
email with MessageDigest.digest() API call. By tracking the
argument of the MessageDigest.getInstance() APl call we
observe that both the password and the email are encrypted
with MDS5 algorithm, which breaks the security rule “Do
not use MD5 or SHA-1 algorithms for encryption.” For the
incorrectness encryption usage of app kalcare.dsc, we leave it
as a case study later.

Then, by applying MALLODROID [16] on the 10 apps
storing collected PHI through networks, we observe that
4 apps do not use SSL. For the other 6 apps that adopt
SSL, each of them contains at least one SSL misuse such
as trusting all certificates or allowing all hostnames. For
example, the app called com.pumapumatrac makes a blank
implementation of the TrustManager interface so that it will
trust all the server certificates (regardless of who signed it,
what is the CN etc.). Furthermore, it even requires the use
of SSLSocketFactory, ALLOW_ALL_HOSTNAME_VERIFIER.
As a result, hostname verification should take place when
establishing an SSL connection is disabled.

2) False Positives and False Negatives: We also investigate
the false positives and false negatives for insecure data
transmission identification. Since our results demonstrate that
the data transmission of all the 59 mHealth apps is insecure,
there is no false negative. To evaluate whether there exist
any false positives, we manually check all the data flow
information of the collected PHI for the apps that do not use
encryption function or SSL. We observe that all the PHI is
stored in plaintext. Furthermore, we manually check the 6 apps
that use SSL and do not find any false positives.

3) Case Study of the Insecure Data Transmission: Finally,
we take the encryption detail of app kalcare.dsc as a case
study. kalcare.dsc encrypts four kinds of PHI, including
name, phone, email, and password. The collected name
and phone are encrypted with MessageDigest.digest() API
call and the collected email and password are encrypted
with Cipher.doFinal() API call. By tracking the argument of
MessageDigest.digest() we observe that SHA-256 algorithm
is used. For the use of Cipher.doFinal() API call, we further
check its compliance with the security rules. The code snippets
of encrypting email and password with the doFinal() API call
are presented in Fig. 8. The argument of Cipher.getinstance()
is “DESede/CBC/PKCS5Padding,” which indicates that the
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1 public class CipherUtil{
2 private static byte[] sharekey;
3 private static byte[] sharedvector;
4 static{
5 CipherUtil.sharedkey=new byte[]{1,2,3,5,..};
6 CipherUtil.sharedvector=new byte[]{1,2,3,5,..};
7 }
8 public static String encrypt(String arg6){
Cipher v@=Cipher.getInstance(“DeSede/CBC/PKCS5Padding”);
v0.init(1, new SecretKeySpec(CipherUtil.sharedkey, “DESede”),
new IvParameterSpec(CipherUtil.sharedvector));
v2=String.copyValueOf(Base64Coder.encode(v@.doFinal
(arg6.getBytes(“UTF-8"))));
15 }
return v2;
17 }

Fig. 8: Code snippets of encrypting data with the doFinal() API call in app
kalcare.dsc.

adopted encryption algorithm is DESede and the encryption
scheme is CBC mode. Thus, this app obeys the rule “Do not
use ECB mode for encryption” but does not follow the rule
“Do not use a constant IV or constant keys for encryption” as
both the arguments of SecretKeySpec() and IvParameterSpec()
are static constants listed in line 5 and line 6, which would
cause data more subject to attacks.

Answer to RQ3: For the 59 mHealth apps that collect
user input PHI, only 8 of them try to ensure the PHI
transmission security with reasonable measures, i.e., 2
apps protect data with encryption algorithms and 6 apps
adopt SSL protocol. However, all of the 8 apps contain
at least one kind of encryption or SSL misuse. The
security of the collected PHI data has not been heeded
enough, which would cause serious data breaches.

V. DISCUSSIONS AND THREATS TO VALIDITY
A. Lessons Learned from Results

Providing transparent and accessible privacy policy about
the personal data is the essential requirement for organizations
that fall under the scope of GDPR. However, according to our
evaluation result, 189 (23.7%) do not provide complete privacy
policies. The main reason is that GDPR introduces several
new privacy requirements compared with old regulations. For
example, one new requirement is that apps must acquire the
user’s active and informed consent before any personal data
is collected (i.e., User Consent notice in this work). However,
up to now, many apps would assume that a user’s decision
to proceed with app registration and use is equivalent to
having the user’s consent to collect data. Lacking any notice
introduced in our work would not meet the transparency
requirement of GDPR. By using our tool, app developers can
discover the missing notices and complement them. For app
users, they can quickly understand the semantics for the most
important data processing related content, so well as their
rights when using the app.

Data minimization is another essential requirement of
GDPR. Data processing should only use as much data as is
required to successfully accomplish a given task. However, in
our work, we find that 46 apps contain at least one inconsistent
data collection behavior. We manually check the policies and
find there are two reasons: First, 59 inconsistent behaviors
occurred in 26 apps are caused by the vague description
such as “other information”; Second, the other 33 inconsistent
behaviors occurred in the other 20 apps are mainly caused
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by the app developers’ intentional ignorance (e.g., they think
such data is not important, or they want to collect such data
without informing app users). To mitigate the occurrence of
inconsistent data collection behaviors, by leveraging our tool,
the app developers can first list all their collected data. Then
they can specify such collected data in their privacy policy
clearly. For app users, they can have a clear understanding of
which personal data are collected by app developers and how
they are processed in the app.

Confidentiality is the only principle that deals explicitly with
security in GDPR. Meanwhile, it is the most concerned one
by users since there are more and more data breach events in
recent years. Based on our evaluation results, although most
apps declare that they would implement reasonable measures
to keep the data secure, only 8 apps try to adopt security
measures, and all of them contain at least one kind of misuse.
The evaluation results indicate that the app users’ data might
be leaked in high probability, which is amazing to us.

B. Threats to Validity

Data-flow Analysis. Even we use the popular static analysis
tools, including FLOWDROID, ICCTA, and EDGEMINER, to
tract the data flow, there still exist false negatives, which
might cause the missing of PHI collection. The existing of
false negatives further unveils that the status quo of GDPR
compliance violations in Android apps is worse than what we
demonstrate. Combining with dynamic analysis [52], [53] is a
promising way to solve this problem.

Self-implemented Encryption Detection. For the encryption
analysis, our approach would fail if the self-implemented
encryption function is applied since we only rely on the study
of system-provided encryption algorithms. A promising way
to address this limitation is to compare the data entropy before
and after the invocation of possible encryption function while
the app is running [54]. If the data entropy is much higher after
the function invocation, then the data might be encrypted in
the corresponding function.

Ground Truth Dataset: We use a triple module redundancy
approach when preparing ground truth dataset. However, if
three authors fail to achieve a consistency, we would not add
the sample into our dataset. The lacking of such sentences
in training set would affect the classifier performance when
dealing the similar sentences.

VI. RELATED WORK

Privacy Policy Analysis. Several studies focus on the privacy
policy analysis in recent years [55], [56], [57], [10]. Slavin
et al. [9] proposed a semi-automated framework for detecting
the violations based on a privacy-policy-phrase ontology and a
collection of mappings from API calls to policy phrases. Yu et
al. [8] proposed PPCHECKER that focuses on system-managed
data and identify three kinds of problems in the privacy policy.
The most related work is proposed by Wang et al. [58], who
automatically detect privacy leaks of user-entered data for a
given Android app and determines whether such leakage may
violate the app’s privacy policy claims. There are three main
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differences between our work and the above studies: 1) We
combine the analysis of mHealth apps with the GDPR while
[9], [10], [8], [58] do not consider. 2) We focus on the PHI
input by the users on GUI rather than the system-managed
data analyzed by [9], [10], [8]. 3) We further investigate the
transmission security of collected data while [58] does not.
GUI Analysis. A few studies are focusing on the analysis
of GUI [59], [60], [38], [61], [62], [63], [64]. The most
related works are UIPICKER [62], SUPOR [61], UIREF [38]
and GUILEAK [58], the goals of which are identifying the
sensitive user input information on the GUI. UIPICKER [62]
and GUILEAK [58] use sibling relationships in layouts to find
the associated labels and input widgets. However, in practice,
sibling relationships do not accurately gauge proximity. Both
SUPOR [61] and UIREF [38] select the optimal label by
calculating the distances between the labels and the input
widgets based on the positions displayed on the screen.
GDPR Compliance Checking. Several recent works focus on
the GDPR compliance checking [65], [66], [67], [68], [69].
However, their methodologies are quite different from ours.
Torre et. al [65] proposed a model-based GDPR compliance
analysis solution using unified modeling language (UML) and
object constraint language (OCL). Torre et. al [66] provided
an automated support for checking whether the content of a
given privacy policy is complete according to the provisions
stipulated by GDPR. Due to a different research goal, our
paper focuses on a specific subset of GDPR privacy policy
requirements, and so we consider 6 out of the 55 categories
that are presented in [66]. Palmirani and Governatori [67]
presented a proof-of-concept applied to the GDPR domain,
with the aim to detect infringements of privacy compulsory
norms or to prevent possible violations using BPMN and Re-
gorous engine. These existing approaches conduct compliance
checking from the perspective of modeling. We go beyond
the above approaches by transforming the GDPR requirements
into specific regulations and combine with program analysis
techniques so that we can conduct a fine-grained empirical
evaluation on real mHealth apps.

VII. CONCLUSION

We develop a system called HPDROID based on existing
techniques and conduct the first systematic investigation on
automatically detecting the compliance violations between the
GDPR and mHealth apps. The experimental results on 796 real
mHealth apps reveal that most of the apps are not compliant
with the GDPR, which would raise the awareness of the
privacy protection for the mHealth app users and developers.
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